1. Planning

1.1 Defining the Problem [4]

- Identify:
\circ the independent variable in the experiment
\circ the dependent variable in the experiment
- the quantities to be controlled - kept constant
- Formulate the aim in terms of a prediction or a hypothesis, and express this in words or in the form of a predicted graph
- Hypothesis is usually a short statement showing the relationship (e.g. proportional) between two variables.
- Explain your hypothesis using scientific knowledge - Rate of reaction = collision theory
- Enthalpy of solution $=$ ionic radii/ $\Delta H_{h y d}$ and $\Delta H_{\text {lat }}$
- Group 2 = radii

1.2 Methods [8]

- Describe the methods to be used to vary the independent variable, and the means that you propose to ensure that you have measured its values accurately
- Describe how you will measure the dependent variable
- Describe how you will control each of the other variables
- Explain how you will use any control experiments to verify that it is the independent variable that is affecting the dependent variable and now some other factor
- Describe the arrangement of apparatus and the steps in the procedure to be followed
- Suggest appropriate volumes and conc. of reagents
- Assess the risks of your proposed methods
- Describe precautions that should be taken to keep risks to a minimum
- Draw up tables for data that you might wish to record
- Describe how the data might be used in order to reach a conclusion

2. Analysis, Conclusions and Evaluation

2.1 Dealing with Data [6]

- Identify the calculations and means of presentation of data that are necessary to be able to draw conclusions from provided data
- Use calculations to enable simplification or explanation of data
- Use tables \& graphs to draw attention to the key points in quantitative data, including the variability of data

Calculations may include:

- Mean:

$$
\bar{x}=\frac{\sum x}{n}
$$

- Median: middle result when results in ascending order
- Mode: most common value
- Percentage Gain/Loss:

Percentage Gain $/$ Loss $=\frac{\text { Actual Loss } / \text { Gain }}{\text { Original Amount }} \times 100$

2.2 Evaluation [4]

- Identify anomalous values in provided data and suggest appropriate means of dealing with such anomalies
- Suggest possible explanations for anomalous readings
- Identify the extent to which provided readings have been adequately replicated, and describe the adequacy of the range of data provided
- Use provided information to assess the extent to which selected variables have been effectively controlled

2.3 Conclusion [2]

- Draw conclusions from an investigation, providing a detailed description of the key features of the data and analyses, and considering whether experimental data supports the conclusion reached
- Make detailed scientific explanations of the data, analyses and conclusions that they have described
- Make further predictions, ask informed and relevant questions and suggest improvements

2.4 Tables

- Label each column with:
- a description (e.g. concentration of acid in water)
- a unit (e.g. /mol dm-3)
o an expression to calculate the data (e.g. Bx0.1/20)
- Make sure values calculated is to s.f./d.p. required in question

2.5 Graphs

- Independent variable plotted on the x-axis and the dependent on the y-axis
- Appropriate scale; 1 large box $=1,2,4$ or 5 .
- Graph must cover at least half the grid in both directions
- If experiment/relationship shows origin $(0,0)$ is a valid point, scaling must include origin \& line should include it as it is a definite point not subject to experimental errors
- When referring to anomalous result, clearly define the point before stating reason
- When calculating gradient, show construction lines and hypotenuse must be greater than half the line

3. Details and Methods

3.1 General Information

- Use burette/pipette to measure volumes as they have low \% errors
- Using a 3 d.p. balance rather than a 2 d.p. balance reduces \% error
- Percentage errors very high with very small volumes/masses
- Heating crystals strongly; use a crucible placed on a pipe clay triangle
- Allow crucible to cool on heat mat before placing on balance to measure mass
- Use sandpaper to clean surface of metal e.g. magnesium ribbon (remove oxide layer)
- Maximum temperature difficult to determine so instead, take readings at regular intervals
- The temperature of the solution is not uniform so stir the solution throughout the experiment
- No need to measure mass/volume of reagents in excess
- Flush out oxygen from a system using an inert gas (used in reduction experiment of metal oxides)
- To collect water vapour as liquid, collect in beaker placed in ice bath (Liebig condenser)
- Use a divided flask to keep reagents separate - shake to begin reaction \& start time immediately; no gas escapes
- If syringe gives incorrect value, could be because it got stuck during the experiment
- If percentage difference between measured \& true value - More than max apparatus error, experimenter's technique needs modification
- Less than max apparatus error, due to error in apparatus or simply random error
- To improve accuracy of pH against volume curve, use data logger interface and computer to plot the graph

3.2 Volumes of Apparatus

- Always mention volume of apparatus being used
- Common volumes:
- Test tube $=16 \mathrm{~cm}^{3}$
- Gas syringe: $100 \mathrm{~cm}^{3}$ up to $500 \mathrm{~cm}^{3}$
- Glass beaker $=250 \mathrm{~cm}^{3}$
- Polystyrene cup $=150 \mathrm{~cm}^{3}$
- Calculate quantities and show volume would not exceed the apparatus used

3.3 Potential Risks and Solutions

- Oxygen: is an oxidant so remove any oxidisable material
- Nitrogen dioxide: is poisonous so carry out experiment in a fume cupboard
- When collecting gas over water: potential suck back so remove delivery tube from water when heating stops
- Solution boils over/sprays: use gloves, eye protection
- Corrosive nature of reagents: use gloves

3.4 Anomalous Points on the Graph

- A particular measurement is done before or after the moment it should be done
- Incomplete:
- oxidation/reduction
- decomposition
- reaction
- Loss of water/chemical
- A compound has decomposed
- A solution has not been saturated
- Not all the water in the solution has been evaporated
- Crystals not adequately dried (propanone or water)
- Solid blown out of tube by not heating gently

3.5 Removing Moisture
 - From surface:

- Wash surface with stream of propanone
- Propanone dissolves the water - repeat several times

Gently heat surface to evaporate propanone from surface

- From vapours: pass vapour through beaker containing a

desiccant

Anhydrous sulphuric acid
Anhydrous calcium chloride
Silica gel
Can use soda lime: absorbs both water vapour and carbon dioxide

3.6 Forming Specific Conc. Solutions From a given parent solution

e.g. $250 \mathrm{~cm}^{3}$ of $0.1 \mathrm{~mol} \mathrm{dm}^{-3}$ using a $2.0 \mathrm{~mol} \mathrm{dm}^{-3}$ solution

- Use $C_{1} V_{1}=C_{2} V_{2}$

$$
\begin{gathered}
2.0 \times x=250 \times 0.1 \\
x=12.5 \mathrm{~cm}^{3}
\end{gathered}
$$

- Add $12.5 \mathrm{~cm}^{3}$ of parent solution to a volumetric flask $\left(250 \mathrm{~cm}^{3}\right)$ using a burette

From a solid

e.g. $250 \mathrm{~cm}^{3}$ of $0.5 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of a crystal $\mathrm{Mr}=50 \mathrm{~g}$

- Use Conc $=\frac{\text { Mols }}{\text { Vol }}$

Mols $=0.5 \times 0.25=0.125$

(IE: ALHENUL CHEMSTRY//9701

- Use Mols $=\frac{\text { Mass }}{M r}$

$$
\text { Mass }=0.125 \times 50=6.25 \mathrm{~g}
$$

- Add 6.25 g of solid to $50 \mathrm{~cm}^{3}$ of water in a beaker
- Stir well, add water gradually until fully dissolved
- Transfer solution from beaker to volumetric flask
- Rinse beaker with water and transfer back to volumetric flask
- Stopper the flask and shake properly
- Top off volumetric flask with distilled water to mark.

3.7 Measuring Gas using a Gas Syringe

- Take initial reading of the gas syringe
- Carry our procedure e.g. heating a solid or adding a reagent
- Take final reading of the gas syringe when volume is constant or take readings at regular time intervals
- If experiment heats reagent, wait until gas is at room temperature before measuring volume
- Calculate the maximum mass of solid/reagent that can be used by equating volume produced to volume of gas syringe used. Use samples smaller in size than that.

3.8 Measuring Solubility Experiments

Preparing a saturated solution

- Take a fixed volume of water in a beaker of appropriate volume
- Add the crystal to the water and stir continuously; allow some time for the crystal to dissolve
- After a few minutes of stirring, if no solid crystals appear, add further mass of crystal
- Repeat the process until solid appears in the beaker
- Filter the solution using a filter paper and funnel so that the saturated solution is collected in a beaker beneath the funnel

Preparing crystals:

- Place the beaker in a warm water bath.
- The water of the solution should evaporate and should have dry crystals ready.
- Inappropriate to apply heat directly as crystals could decompose

Measuring solubility:

- Measure mass of saturated solution $=($ Mass of Beaker + Solution) - (Mass of Beaker)
- Heat solution and evaporate all liquid to end up with dry crystals
- Measure mass of crystal = (Mass of Beaker + Crystals) (Mass of Beaker)
- Calculate solubility of crystals

$$
\text { Solubility }=\frac{\text { Mass of Crystal }}{\text { Mass of Solution }} \times 100
$$

3.9 Measuring Enthalpy Experiments

Measuring enthalpy change of an experiment with a solid and a liquid or two liquids:

- Measure specific mass of solid to add using a balance
(mass of bottle + solid) - (mass of bottle + residue)
- Measure specific volume of reagent to add using burette/pipette
- Measure initial temperature of reaction mixture
- Record highest temperature
- Calculate enthalpy using $E=-m c \Delta T$

Disadvantages of using plastic cup to measure enthalpy changes and improvements:

- Heat loss to the surroundings from the beaker:
- Cover the plastic cup with a lid
- Place cup in a beaker; air acts a good insulator
- Use multiple cups to thicken lateral layer of plastic
- Instability of the cup
- Place the cup in a glass beaker
- For exothermic reactions, solution likely to spray
- Use a larger beaker/cup to carry out the experiment
- Put a lid on top of the beaker to minimize the spray

Measuring enthalpy change of combustion

- Measure mass of spirit burner using a 2 d.p. balance
- Add specific volume of water into metal can using measuring cylinder
- Take initial reading of water using a thermometer $\left(1^{\circ} \mathrm{C}\right)$
- Light spirit burner and burn for specific length of time
- Take final reading of water after a specific time

- Measure mass of spirit burner after burning
- Calculate mass of alcohol burned
- Use $E=-m c \Delta T$ and use ratios to calculate for 1 mole of alcohol

3.10 Titration Experiments

- Rinse burette and pipette with solution to be added before carrying out experiment
- Empty pipette into conical flask under gravity without forcing any drops to fall
- Remove funnel from burette before titration
- Add only two drops of indicator
- Swirl mixture during titration
- Titrate drop by drop when close to the end-point
- Keep eye-level perpendicular to burette when taking measurements
- Record burette reading to 2 decimal places

- For better observation:

- Place a white tile under the conical flask
- Illuminate the burette while taking the reading
- Titrations are highly accurate because:
- Standard solution of acid/base is used
- Able to obtain consistent titres (difference between two closest titres $=0.1 \mathrm{~cm}^{3}$
0% error in pipette and burette is very small
- The end point of a titration is sharp

