CIE AS-LEVEL BIOLOGY//9700

PRACTICAL NOTES

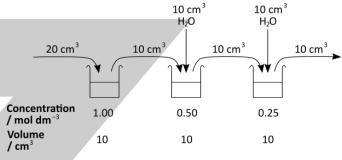
1. Skeletal Mark-Scheme

SKILL	BREAKDOWN		
MANIPULATION OF APPARATUS, MEASUREMENT, AND OBSERVATION [16]	 Making decisions about measurements or observations [8] Successfully collecting data & observations [8] 		
PRESENTATION OF DATA AND OBSERVATIONS [12]	 Recording data and observations [4] Displaying calculations and reasoning [2] Data or observations layout [6] 		
ANALYSIS, CONCLUSIONS, AND EVALUATION [12]	 Interpreting data or observations and identifying sources of error [6] Drawing conclusions [3] Suggesting improvements to procedure, modifications to extend investigation [3] 		

2. MANIPULATION OF APPARATUS, MEASUREMENT & OBSERVATION

2.1 Variables

- Independent variable is the factor that changes in an investigation and dependent variable is the factor that changes as a result.
- Other variables that may affect the dependent variable must be identified and kept constant, i.e. standardized.
- Control samples are standardized ones with effect of independent variable also removed.
- Qualitative (non-numerically observable) variables can be nominal (categorisable) or ordinal (rank-able).
- Quantitative (numerically representable) variables can be continuous or discrete.


2.2 Experimental Skills

- Range (spread between highest and lowest value) and intervals (difference between values) of independent variable must be decided.
- Concentration of a sample is a common independent variable, thus dilution becomes an important skill.

- Dilution is of 2 types:
- Simple, where a mother solution is diluted by different ratios:

Mother solution		Volume	Final solution	
Conc. / mol dm ⁻³	Volume / cm ⁻³	of H_2O added / cm ⁻³	Conc. / mol dm ⁻³	Volume / cm ⁻³
1.0	80	2.0	0.8	10.0
1.0	6.0	4.0	0.6	10.0
1.0	4.0	6.0	0.4	10.0
1.0	2.0	8.0	0.2	10.0

 Serial, where previously diluted solution is diluted by same ratio:

Other variables must be identified and standardized:

STANDARDISING METHOD

- VARIABLE TEMPERATURE Thermo-statically controlled water bath PH Buffer solution of known concentration LIGHT Heat-shielded lamp set at constant INTENSITY distance/power WIND SPEED Fan set at constant distance & power HUMIDITY Solid anhydrous Calcium Chloride
- Other standardised variables include: mass, concentration, volume, source, age, storage, conditions, genotype of sample.

• Dependent variables must be measured by proper instrument:

- Temperature Thermometer.
- Colour Colorimeter.
- pH Indicator/pH meter.
- No. of cells Haemocytometer.
- Power Voltmeter & ammeter.
- Mass Balance.
- Time Clock/Stopwatch.
- Length Microscope with calibrated eyepiece graticule/Ruler.
- Volume Beaker/Measuring cylinder/Burette/Pipette.
- Note: Read from bottom of meniscus and estimate to half of smallest division in analogue scales, e.g. burette.

CIE AS-LEVEL BIOLOGY//9700

		CIE AD-LEVEL B	SIVLVGT//Y/VV
2.3 Qua	<u>lity of Measurements</u>		Use most space available to make drawing large enough
TERM	EXPLANATION	IMPROVEMENT	to show essential features.
Accuracy	Closeness to true value	Better	• Draw clear, single lines with sharp HB pencil (keep a
Accuracy		instruments	clean eraser).
Precision	Closeness to repeated	Control all	• Show overall shape and ensure proportions are correct.
	readings	variables	• Don't shade or colour.
Reliability	Confidence in results	Repeat readings and take mean	• Label using accurate, straight, horizontal, non-
Agreement hetwa	Agreement between	Check relation	intersecting ruled lines.
Validity	hypothesis and	between key and	<u>3.4 Mathematical Skills</u>
	investigation	derived variables	
-			• % error = $\frac{\text{No. of readings} \times \text{Half of smallest scale division}}{\text{Total reading}} \times$
3. Prese	ENTATION OF DATA & O	BSERVATIONS	100%
_ /			• Mean = $\frac{\text{Sum of data}}{\text{No. of data}}$
<u>3.1 Tabulating Results</u>			• Useful for replicated readings.
 Draw table with neat, ruled pencil lines. 			• Gradient = $\frac{\Delta y}{\Delta x}$, where $\Delta y \& \Delta x$ are height and width of
 Give each column suitable heading (Quantity/SI unit) 		•	
Arrange columns in order: independent, dependent &		ent, dependent &	triangle.
derived variable.			Draw right-angled triangle from 2 points on straight line such as the straight of any straight bet triangle average.
 Round data to some no. of decimal places to maintain 		places to maintain	graph or tangent of curve; Ensure that triangle exceeds half of graph.
consister	ncy.		
2 2 Dlatt	tina Cranhs		• % change = $\frac{\text{Final - Initial}}{\text{Initial}} \times 100\%$
<u>3.2 Plotting Graphs</u>			• It makes comparing easier by negating effects of
• Decide type of graph:			differences in initial readings between samples.
 Line graph (Both variables are continuous) Listogram (Independent variable is continuous) 			• Magnification is no. of times image is larger than actual:
 Histogram (Independent variable is continuous) Bar shart (Dependent variable is continuous) 			Magnification = $\frac{\text{Image}}{\text{Actual}}$
 Bar chart (Dependent variable is continuous) Bars touch in histograms only not in har charts 			 Actual Resolution indicates amount of detail.
 Bars touch in histograms only, not in bar charts. 			 Resolution indicates amount of detail. It is shortest distance between 2 points that can be
 Independent variable at x-axis and dependent at y-axis. Use linear scale with sensible (1s, 2s, 5s, 10s,) 			distinguished or separable.
intervals.			 It is equal to half of wavelength of light used.
• Axes don't have to stand out. If they do, a break should			o it is equal to half of wavelength of hight used.
be indicated.			4. Analysis, Conclusion & Evaluation
	uch of graph paper as possi	ble.	,,
• Label each axis fully, according to variable's column			4.1 Describing & Interpreting Data
heading.			Describe overall trend.
• For line graphs:			• Comment on changes in gradient.
• Plot points with \times or \odot marks.			• Quote figures to support claim.
 Join successive points with straight lines. 		t lines.	Avoid phrases that suggest something is happening over
 If there is clear relation, draw smooth wave, or line of 			time, unless it is the independent variable.
best fit.			• Draw a conclusion by connecting it to description using
• Don't ext	trapolate line.		theoretical reasoning.
			 Conclusion should be simple, clean, focused and
<u>3.3 Making Biological Drawings</u>			scientifically explainable statement describing deduction
-	s can be low-power plan (sh	-	regarding the hypothesis from results.
	thout outlining cells), or hig	•	
(chowing	dotails of small group of in	dividual calle)	

(showing details of small group of individual cells).

CIE AS-LEVEL BIOLOGY//9700

4.2 Identifying Errors

- Systematic errors are equal throughout investigation, as they result from uncertainties in measurements.
- Random errors differ across investigation as they arise owing to difficulties in controlling standardised variables and measuring dependent variable.
- Common error sources include:
 - Anomalous readings (owing to inadequate technique/replicates)
 - Inadequate range and intervals.
 - \circ Uncontrolled variables.

