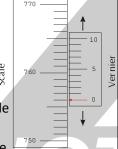

CIE AS-LEVEL PHYSICS//9702

1 General Tips

- If range given e.g. 0 to 20, try to get measurement from a large spread of the range.
- Record all measurements needed to obtain final value including intermediary steps
- For example if a length l is derived from $l = l_2 l_1$ then l_1 and l_2 should appear in the table.
- Column labelled with name of symbol and units

2 Micrometer Screw Gauge


Measures objects up to 0.01mm

- Place object between anvil & spindle
- Rotate thimble until object firmly held by jaws
- Add together value from main scale and rotating scale

3 Vernier Scale

Measures objects up to 0.1mm

- Place object on rule
- Push slide scale to edge of object.
- The sliding scale is 0.9mm long & is divided into 10 equal divisions.
- Check which line division on sliding scale matches with a line division on rule
- Subtract the value from the sliding scale $(0.09 \times Divisions)$ by the value from the rule.

Rotating scale (0.01mm

4 Systematic and Random Errors

• Systematic error:

- o Constant error in one direction; too big or too small
- o Cannot be eliminated by repeating or averaging
- o If systematic error small, measurement accurate
- Accuracy: refers to degree of agreement between result of a measurement and true value of quantity.

• Random error:

- o Random fluctuations or scatter about a true value
- o Can be reduced by repeating and averaging
- o When random error small, measurement precise
- Precision: refers to degree of agreement of repeated measurements of the same quantity (regardless of whether it is correct or not)

4 Uncertainties

For a quantity $x = (2.0 \pm 0.1)mm$

- Absolute uncertainty = $\Delta x = \pm 0.1 mm$
- Fractional uncertainty = $\frac{\Delta x}{x} = 0.05$
- Percentage uncertainty = $\frac{\Delta x}{x} \times 100\% = 5\%$
- Combining errors:
 - \circ When values **added or subtracted**, add absolute error If $p=\frac{2x+y}{3}$ or $p=\frac{2x-y}{3}$, then $\Delta p=\frac{2\Delta x+\Delta y}{3}$
 - When values multiplied or divided, add % errors
 - When values are powered (e.g. squared), multiply percentage error with power

If
$$r = 2xy^3$$
 or $r = \frac{2x}{y^3}$, then $\frac{\Delta r}{r} = \frac{\Delta x}{x} + \frac{3\Delta y}{y}$

Instrument	Uncertainty
Ruler	0.1 cm
Protractor	2°
Stop watch	Max - Min
Ammeter	2

5 Treatment of Significant Figures

- Actual error: recorded to only 1 significant figure
- Number of decimal places for a calculated quantity is equal to number of decimal places in actual error

Quantity	Justification
s.f. of calculated quantity	To s.f. of measure value
s.f. of measure value	To precision of instrument

 Always give calculated quantity s.f. equal or one less than measured value

6 Errors in Experiments

Error	Improvement	
Water related experiment		
Hard to see surface due to refraction/meniscus effect	Use colored liquid	
Labels get wet/ink runs	Use waterproof labels/ink	
Ball related experiment		
Locating center of the ball	Mark the center of the ball	
when reading rule	with marker	
Inconsistent bounce	Use a flat surface	
Fast-moving object experiment		
Difficult to judge when ball	Use sensor or record with	
is at e.g. max displacement	camera frame by frame	
Hard to see when object	Use pressure sensor to	
strikes floor	stop timer	
Difficult to judge end point	Mark distance with lines	

CIE AS-LEVEL PHYSICS//9702

Difficulty in deciding the toppling point	Move by increments/hold	
	with newton-meter	
Dalamaina ahiaat fu	and tilt until F = 0	
Releasing object from rest experiment		
Difficulty in releasing	Use a remote-controlled	
object due to e.g. force	clamp/electromagnet	
Rod falls sideways	Keep rod vertical/use guide	
<u>Oscillation</u>	<u>experiment</u>	
	Time object at max disp.	
Time taken (T) too short or	with motion sensor/video	
large uncertainty in T	& playback in slow motion	
	/time more oscillations	
Object doesn't swing	Make hole bigger/bush or	
freely/ friction between	bearing idea	
pivot and object	bearing idea	
Non-uniform osc.	Turn off fan (light object)	
Oscillations die out quickly	Increase object thickness	
Difficult to judge end/start/	Use fiducial marker	
complete swing	Ose fiducial filarker	
Retort stand moves	Add weights/clamp	
<u>Electricity</u>	<u>experiment</u>	
Resistance/current	Clean contacts	
fluctuating	Cicari contacts	
Voltmeter scale not	Use digital voltmeter	
sensitive enough		
Wires not straight	Tape to ruler/hang weights	
	off end/clamp wire	
	<u>periment</u>	
Reach max force suddenly	Force sensor w/data logger	
Weights move off path	Fix cotton loop to rule e.g.	
	tape, glue	
	<u>periment</u>	
Masses hit each other	Use larger pulley	
Friction at pulley	Lubricate pulley	
Uncertain starting position	Clamp / electromagnetic	
	with steel	
Moment experiment		
Rule hits bench	Project cylinder over bench	
Bular clins on support	/ elevate apparatus	
Ruler slips on support	Glue support to block	
<u>Magnetism experiment</u>		
Effect of surrounding e.g.	Use various materials to	
glass/magnetic materials	separate magnets & test if material affects results	
	material affects results	

I JICJ///IUL			
Bench/ Ramp (Surface) related experiment			
Some parts of board	Ensure same section of		
rougher / surface uneven	board used in each expt.		
Board slips/unstable	Clamp/fix to bench with		
/supporting block topples	tape/blu-tack		
Difficult in pulling in line	use (long) piece of string to		
with board	connect the newton-meter		
שונוו שטפוט	to the block		
<u>Heat loss</u>	<u>experiment</u>		
Heat lost through sides	Lag/insulate/polystyrene		
and /or Bottom	container		
Thermometer bulb not	Use larger volume of water		
completely immersed	/use thermocouple/small		
completely infinersed	temperature sensor		
Resistor gives heat when	Wait until temp. reaches		
switched off/temp. rises	max before reading		
even after switching off	max before reduing		
<u>Terminal velocity experiment</u>			
May not have reached	Time over three markers		
terminal velocity	constant		
<u>Light dependent experiment</u>			
External light affects (LDR)	Conduct expt. in dark room		
Length of tube changes	Make pro clots in tube		
when paper added	Make pre-slots in tube		
Cylinders not aligned	Align on desk/rule		
Difficult to hold together	Tape/clamp together		

Errors in Apparatus

Error	Improvement	
<u>Meter rule</u>		
	Put colored paper behind/	
Parallax error	eye-level perpendicular	
	/extend mark to wood	
	/shadow projection	
Difficult to hold rule still	Mount ruler in stand	
Difficult to measure	Clamp rule / ensure rule is	
because the ruler moves	vertical using set square	
Newton meter		
Difficult to pull Newton	Ensure force parallel to	
meter parallel to ruler/	ruler e.g. use a long	
bench	string/pulley and weights	
Difficult to judge reading	Use Newton meter with a	
on meter when detached:	'max hold' facility/video &	
ruler moves suddenly/	playback or freeze frame/	
force = 0 after detachment	use force sensor & logger	
Difficult to zero Newton-	Use system of pulley &	
meter when horizontal	weights/use force sensor	
ineter when nonzontal	with data-logger	

CIE AS-LEVEL PHYSICS//9702

Objects with unfixed diameter (Circular objects)		
Difficult to measure	Use Vernier calipers or	
diameter because object	micrometer screw gauge	
flexible/not circular	to measure average	
	diameter	
Difficult to form perfect	Method to make uniform	
sphere/diameter varied	spheres/discs e.g. molds	
<u>Protractor</u>		
Protractor "wobbles" /	Use protractor with	
difficult to measure;	horizontal line level to	
container curved at the	table top/freestanding or	
bottom/difficult to line up	clamped protractor	
Parallax error in θ	Use mirror scale	

• General:

- o **Error**: two readings not enough
- o Improvement: take several readings and plot a graph

© Copyright 2015 by ZNotes

First edition © 2015, by Emir Demirhan, Saif Asmi & Zubair Junjunia.

This document contain images and excerpts of text from educational resources available on the internet and printed books. If you are the owner of such media, text or visual, utilized in this document and do not accept its usage then I urge you to contact me and I would immediately replace said media.

No part of this document may be copied or re-uploaded to another website without the express, written permission of the copyright owner. Under no conditions may this document be distributed under the name of false author(s) or sold for financial gain; the document is solely meant for educational purposes and it is to remain a property available to all at no cost. It is currently freely available from the website www.znotes.org

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.