ZNOTES // IGCSE SERIES visit www.znotes.org

Updated to 2016-18 Syllabus

ALTERNATIVE TO PRACTICAL NOTES (PAPER 6)

APPARATUS

Page 2

EXPERIMENTS

• Reducing Copper(III) Oxide to Copper

٠

EXPERIMENTS

• Showing that oxygen and water is needed for rusting iron

RATES OF REACTION

- Testing factors affecting rate of reaction
 - Different temperature acid
 - Different size of particle/reactant

ENERGY IN ALCOHOL

• Find the amount of energy given when an alcohol is burnt:

- Thermometer You need to know: Clamp Mass of water ٠ Change in mass of burner containing alcohol ٠ Conical flask Specific heat capacity of water ٠ Source of error = heat escapes Temperature change of water The molecular mass of the alcohol ٠ Spirit burner $\frac{Change in mass}{d} = Number of moles burnt$ Molecular mass Alcohol Change in temperature \times mass of water \times SHC of water = Energy
 - $\frac{Energy}{Moles \ burnt} = amount \ of \ energy \ per \ mole \ (J/mol)$

FINDING CONCENTRATION

Page 9

Acid and base titration to find the concentration of a solution: Measure volume of acid then pour into conical flask Record initial volume of base in burette Slowly add base from burette, stirring each time Buret containing base (or acid) When indicator neutral, record final volume of base Find amount of bas used: Final – Initial Stopcock Find moles of base used by *volume*×concentration Use balanced equation to find how many moles of acid are needed to neutralize the base Acid (or base) and indicator Number of moles of Acid Needed = Concentration of Acid Volume of Acid Used

FLAME TESTS

- Lithium = Red
- Sodium = Yellow
- Potassium = Lilac
- Iron = Gold
- Magnesium = Bright White
- Source of errors for flame tests:
 - The test cannot detect low concentrations of most ions.
 - Brightness of the flames varies from one sample to another.
 - Impurities or contaminants affect the test results.
 - The test cannot differentiate between all elements or compounds

CHROMATOGRAPHY

- Principle: Difference in solubility separates different pigments
 - Drop substance to center of filter paper and allow it to dry
 - Drop water on substance, one drop at a time
 - Paper + rings = chromatogram.
- Stationary phase: material on which the separation takes place
- Mobile phase: mixture you want to separate, dissolved in a solvent.
- Interpreting simple chromatograms:
 - Number of rings/dots = number of substances
 - If two dots travel the same distance up the paper they are the same substance.

CHROMATOGRAPHY

• You can calculate the Rf value to identify a substance, given by the formula:

 $Rf Value = \frac{Distance moved by solute}{Distance moved by solvent}$

• To make colorless substances visible

Filtration Test Tube Filter paper Mixture goes in a funnel with filter paper, into a flask. ٠ **Original Mixture** Residue is insoluble and filtrate goes through ٠ Funnel Residue Testtube Crystallization Some water in the solution is evaporated so solution becomes Filtrate ٠ more concentrated. Solution is left to cool and crystallise. ٠ Crystals are filtered to remove solvent. ٠

- Simple distillation:
 - Impure liquid is heated
 - It boils, and steam rises into

the condenser

- · Impurities are left behind
- Condenser is cold so steam

condenses to the pure liquid

and it drops into the beaker

liquid substance

- Fractional distillation: Thermometer Removes a liquid from a mixture of liquids, because liquids ٠ have different b.p.s Fractionating Mixture is heated to evaporate substance with lowest b.p. ٠ Water out Condenser some of the other liquid(s) will evaporate too. ٠ Round-bottom Beads are heated to boiling point of lowest substance, so ٠ flask Water in that substance being removed cannot condense on beads. Other substances continue to condense and will drip back ____ Bunsen burner ٠ into the flask
 - The beaker can be changed after every fraction.

- Separating mixture of two solids:
 - Can be done by dissolving one in an appropriate solvent
 - · Then filter one and extract other from solution by evaporation
 - If one solid is magnetic, can use a magnet e.g. sand and iron

Solvent	It dissolves
Water	Some salts, sugar
White spirit	Gloss paint
Propanone	Grease, nail polish
Ethanol	Glues, printing inks, scented substances, chlorophyll

• Choosing a suitable method:

Method of separation	Used to separate
Filtration	A solid from a liquid
Evaporation	A solid from a solution
Crystallization	A solid from a solution
Simple Distillation	A solvent from a solution
Fractional Distillation	Liquids from each other
Chromatography	Different substances from a solution

Page 17

- When bubbling (hydrogen) stops the reaction is done
- Filter off excess metal

٠

- Starting with an insoluble base:
 - Add insoluble base to acid and heat gently, it will dissolve
 - Keep adding until no more dissolves (reaction is done)
 - Filter out the insoluble (excess) base

MAKING SALTS

• Titration:

- Put a certain amount alkali in a flask and add phenolphthalein
- Add acid from a burette, stirring, until it goes colorless
- Find out how much acid you used and repeat, to be more accurate
- Evaporate water from neutral solution
- Precipitation:
 - Mix the two soluble salts, so they react together
 - Filter the mixture to separate the products produced (soluble and insoluble salt produced)
 - Wash the insoluble salt on the filter paper
 - Dry the insoluble salt in a warm oven

SALTS AND INDICATORS

• Solubility of salts:

Soluble Salts	Insoluble Salts			
All sodium, potassium and	The rest			
ammonium salts	The rest			
All nitrates	N/A			
Chlorides	Except silver and lead			
Sulphates	Except barium, lead and calcium			
Potassium, sodium and	All other carbonates			
ammonium carbonates				

• Indicators:

	Indicate	Color in acid						Color in alkaline				e.				
	Phenolphthal	Colorless						Pink								
	Methyl orange Methyl red Red litmus					Pink						Yellow				
						Red Red						Yellow Blue				
	Blue litmus					Red						Blue				
	1 2 3			4	5	6	7	8	9	10	11	12	13	14		
	increasin acidio									i	increasingly alkaline					

• pH Scale:

TEST FOR ANIONS AND CATIONS

Sodium Cation Ammonia Hydroxide Soluble white Aluminum (Al³⁺) White ppt. ppt. Ammonium gas -Ammonium N/A damp red litmus (NH₄⁺) turns blue Calcium (Ca²⁺) White ppt. No ppt. Light blue soluble Copper (Cu²⁺) Light blue ppt. ppt. Iron(II) (Fe²⁺) Green ppt. Green ppt. Iron(III) (Fe³⁺) Red-brown ppt. Red-brown ppt. White soluble White soluble Zinc (Zn²⁺) ppt. ppt.

Anion	Test	Test result		
Carbonate	Add dilute nitric	Limewater goes		
(CO ₃ ²⁻)	acid	cloudy		
Chloride (Cl ⁻)	Add nitric acid,	White ppt.		
Bromide (Br ⁻)	then aqueous	Cream ppt.		
Iodide (I ⁻)	silver nitrate	Yellow ppt.		
	Add aqueous	Gas produced		
Nitrate (NO ₃ ⁻)	sodium hydroxide	turns damp red		
	then add	litmus paper		
	aluminum	blue		
Sulphate (SO ₄ ²⁻)	Add nitric acid, then add aqueous barium nitrate	White ppt.		
-	parium nitrate			

Page 20

OTHER TESTS

Gas	Test and test result
Ammonia (NH)	Damp red litmus
Ammonia (NH ₃)	paper turns blue
	Bubble gas through
Carbon dioxide (CO ₂)	limewater - from
	colorless to cloudy
Chlorine (Cl ₂)	Bleaches red/blue
$CIIIOTITIE (Cl_2)$	litmus paper
Undrogon (U.)	Place lighted splint,
Hydrogen (H ₂)	squeaky pop
$O_{\rm W}({\rm gan}(0))$	Place glowing splint,
Oxygen (O ₂)	splint relights

Test and test result		Substance	Test and test result
Damp red litmus			White anhydrous copper (II)
paper turns blue		Water	sulphate crystals turns blue
Bubble gas through		vvaler	Blue cobalt chloride paper
limewater - from			turns pink
colorless to cloudy		Alkene	Add to bromine water; from
Bleaches red/blue		AIKelle	orange to colourless
litmus paper		Alkane	Add to bromine water;
Place lighted splint,			remains orange
squeaky pop			Blue litmus paper turns red
Place glowing splint,		Acid	Add a metal carbonate;
splint relights			bubbles of CO ₂
		Base	Red litmus paper turns blue

PREPARING GASES IN THE LAB

To make	Place in flask:	Add	Reaction
CO2	CaCO ₃ (marble chips)	Dilute HCl	$CaCO_3(s) + HCI(aq) \rightarrow CaCl_2(aq) + H_2O(I) + CO_2(g)$
Cl ₂	Manganese (IV) oxide (as an oxidising agent)	Conc. HCl	2HCL(aq) + [O] → $H_2O(I)$ + $CI_2(g)$
H ₂	Pieces of zinc	Dilute HCl	$Zn(s) + HCL(aq) \rightarrow ZnCl_2(aq) + H_2(g)$
02	O ₂ Manganese (IV) oxide (as a catalyst)		$2H_2O_2(aq) \rightarrow 2H_2O(I) + O_2(g)$

ZNOTESZ

COLLECTING GASES

Method	Downward displacement of air	Upward displacement of air	Over water	Gas syringe
Use	Gas more dense	Gas less dense	Gas is sparingly	To measure the
when	than air	than air	soluble in water	volume
Apparatus			gas of low water solubility	20 - 10 - 00 - 10 - 10 - 10 - 10 - 10 -
Examples	Carbon dioxide, chlorine, sulphur dioxide, hydrogen chloride	Ammonia, hydrogen	Carbon dioxide, hydrogen, oxygen	Any gas