ZNOTES / / IGCSE SERIES visit wwrw.znotes.org

Updated to 2017-18 Syllabus

CIE IOSOE

[^0]
TABIE OF CONTENTS

1 CHAPTER 1
Number
$3 \left\lvert\, \begin{aligned} & \text { Chapter } 2 \\ & \text { Algebra \& Graphs }\end{aligned}\right.$

$4 \mid$ chapter 3
 Geometry

$6 \left\lvert\, \begin{aligned} & \text { Chapter } 4 \\ & \text { Mensuration }\end{aligned}\right.$
] CHAPTER 5 Coordinate Geometry
$\left.1\right|_{\mid \text {Trigonometry }} ^{\text {CHAPTER } 6}$
8 chapter 7
Matrices \& Transformations
0) Chapter 8

Probability
$9 \left\lvert\, \begin{aligned} & \text { CHAPTER } 9 \\ & \text { Statistics }\end{aligned}\right.$

1. Number

- Natural numbers:

- used for counting purposes
- made up off all possible rational \& irrational numbers
- Integer: a whole number

- Prime numbers:

- divisible only by itself and one
- 1 is not a prime number
- Rational numbers: can be written as a fraction
- Irrational numbers: cannot be written as a fraction e.g. π

1.1 HCF and LCM

- Highest Common Factor and Lowest Common Multiple:

- LCM = product of all items in Venn diagram
- Prime Factorization: finding which prime numbers - multiply together to make the original number

1.2 Sets

- Definition of sets e.g.
$\circ A=\{x: x$ is a natural number $\}$
- $B=\{(x, y): y=m x+c\}$
- $C=\{x: a \leq x \leq b\}$

○ $D=\{a, b, c, \ldots\}$

Notation:

- $n(A)=$ no. of elements in $\mathrm{A} \bullet A \subseteq B=\mathrm{A}$ is a subset of B
$\bullet \in=\ldots$ is an element of...
- $A \subset B=\mathrm{A}$ is a proper
$\bullet \notin=\ldots$ is not an element of... subset of B
- $A^{\prime}=$ compliment of set A
- $A \nsubseteq B=\mathrm{A}$ is not a subset
- Ø or \{ \} = empty set of B
- $\mathscr{E}=$ Universal set
- $A \cup B=$ union of A and B
- $A \not \subset B=\mathrm{A}$ is not a proper subset of B
- $A \cap B=$ intersection of A and B

Set representations:

1.3 Indices

- $n(A)=$ no. of elements in $\mathrm{A} \bullet A \subseteq B=\mathrm{A}$ is a subset of B
$\bullet \in=\ldots$ is an element of... $\bullet A \subset B=\mathrm{A}$ is a proper
- $\notin=$...is not an element of... subset of B
- $A^{\prime}=$ compliment of set $\mathrm{A} \bullet A \nsubseteq B=\mathrm{A}$ is not a subset
- Ø or $\}=$ empty set of B
- $\mathscr{E}=$ Universal set
- $A \not \subset B=\mathrm{A}$ is not a proper
- $A \cup B=$ union of A and $B \quad$ subset of B
- $A \cap B=$ intersection of A
and B

Standard form:

- $10^{4}=10000$
$10^{-1}=0.1$
- $10^{3}=1000$
$10^{-2}=0.01$
- $10^{2}=100$
$10^{-3}=0.001$
- $10^{1}=10$
$10^{-4}=0.0001$
- $10^{0}=1$
$10^{-5}=0.00001$

Limits of accuracy:

- The degree of rounding of a number
- E.g. 2.1 to 1 d.p.
$2.05 \leq x<2.15$

1.4 Ratio \& Proportion

- Ratio: used to describe a fraction
- e.g. 3 : 1
- Foreign exchange: money changed from one currency to another using proportion
- E.g. Convert $\$ 22.50$ to Dinars
\$1:0.30KD

$$
\$ 22.50 \text { : 6.75KD }
$$

- Map scales: using proportion to work out map scales
- $1 \mathrm{~km}=1000 \mathrm{~m}$
- $1 \mathrm{~m}=100 \mathrm{~cm}$
- $1 \mathrm{~cm}=10 \mathrm{~mm}$
- Direct variation: y is proportional to x

$$
y \propto x \quad y=k x
$$

- Inverse variation: y is inversely proportional to x

$$
y \propto \frac{1}{x} \quad y=\frac{k}{x}
$$

1.5 Percentages

- Percentage:

- Convenient way of expressing fractions
- Percent means per 100
- Percentage increase or decrease:

$$
\text { Percentage increase }=\frac{\text { Actual Increase }}{\text { Original Amount }}
$$

- Simple interest:

$$
\begin{gathered}
I=\frac{P R T}{100} \\
P=\text { Principal } \quad R=\text { Rate of Interest } \quad T=\text { Period of Time }
\end{gathered}
$$

- Compound interest:

$$
A=P\left(1+\frac{R}{100}\right)^{n}
$$

$P=$ Principal $\quad R=$ Rate of Interest $\quad n=$ Period of Time

1.6 Speed, Distance \& Time

$$
\begin{aligned}
\text { Speed } & =\frac{\text { Distance }}{\text { Time }} \\
\text { Average Speed } & =\frac{\text { Total Distance }}{\text { Total Time }}
\end{aligned}
$$

- Units of speed:
- Units of distance:
km/hr m/s
km m
- Units of time:
hr sec

$$
\begin{aligned}
& k m / \mathrm{hr} \times \frac{5}{18}=\mathrm{m} / \mathrm{sec} \\
& m / \mathrm{sec} \times \frac{18}{5}=\mathrm{km} / \mathrm{hr}
\end{aligned}
$$

2. Algebra \& Graphs

2.1 Factorisation

- Common factors:

$$
\begin{aligned}
& 3 x^{2}+6 x \\
& 3 x(x+2)
\end{aligned}
$$

- Difference of two squares:

$$
\begin{gathered}
25-x^{2} \\
(5+x)(5-x)
\end{gathered}
$$

- Group factorization:

$$
\begin{gathered}
4 d+a c+a d+4 c \\
4(d+c)+a(c+d) \\
(4+a)(c+d)
\end{gathered}
$$

- Trinomial:

$$
\begin{gathered}
x^{2}+14 x+24 \\
x^{2}+12 x+2 x+24 \\
x(x+12)+2(x+12) \\
(x+2)(x+12)
\end{gathered}
$$

2.2 Quadratic Factorization

- General equation:

$$
a x^{2}+b x+c=0
$$

- Solve quadratics by:
- Trinomial factorization
- Quadratic formula

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

- When question says "give your answer to two decimal places", use formula!

2.3 Simultaneous Equations

- Simultaneous linear equations can be solved either by substitution or elimination
- Simultaneous linear and non-linear equations are generally solved by substitution as follows:
- Step 1: obtain an equation in one unknown and solve this equation
- Step 2: substitute the results from step 1 into the linear equation to find the other unknown
- The points of intersection of two graphs are given by the solution of their simultaneous equations

2.4 Inequalities

- Solve like equations
- Multiplying or dividing by negative \Rightarrow switch sign

$$
\begin{gathered}
\frac{y}{-3} \geq-7 \\
y \leq-7 \times-3 \\
y \leq 21
\end{gathered}
$$

- When two inequalities present, split into two

\[

\]

2.4 Linear Programming

- For strict inequalities ($<,>$) use broken line
- For non-strict inequalities (\leq, \geq) use solid line

(IE ICSSE MATHEMATISS//0580

- Steps to solve:
- Interpret $y=m x+c$
- Draw straight line graphs
o Shade
o Solve

2.5 Sequences

- Linear sequences: Find common difference e.g. 3 then multiply by n and work out what needs to be added

- Quadratic sequences:

- Format: $a n^{2}+b n+c$

- Work out the values and then place into formula to work out nth term formula
- Geometric progression: sequence where term has been multiplied by a constant to form next term

$$
n t h \text { term of } G . P .=a r^{(n-1)}
$$

$0 \mathrm{a}=1^{\text {st }}$ term $\mathrm{r}=$ common difference

2.6 Distance-Time Graphs

- From O to A : Uniform speed
- From B to C : Uniform speed (return journey)
- From A to B : Stationery (speed $=0$)

- Area under a graph = distance travelled.
- Gradient = acceleration.
- If the acceleration is negative, it is called deceleration or retardation. (moving body is slowing down.)

2.8 Functions

- Function notation:

○ $f: x \rightarrow 2 x-1$

- Function f such that x maps onto $2 x-1$
- Composite function: Given two functions $f(x)$ and $g(x)$, the composite function of f and g is the function which maps x onto $f(g(x))$
- $f(2)$
- Substitute $x=2$ and solve for $f(x)$
- $f g(x)$
- Substitute $x=g(x)$
- $f^{-1}(x)$
- Let $y=f(x)$ and make x the subject

3. Geometry

3.1 Triangles

obtuse scalene triangle

3.2 Quadrilaterals

- Rectangle: Opposite sides parallel and equal, all angles 90°, diagonals bisect each other.
- Parallelogram : Opposite sides parallel and equal, opposite angles equal, diagonals bisect each other
- Gradient $=$ speed

2.7 Speed-Time Graphs

- From O to A : Uniform speed
- From A to B : Constant speed (acceleration $=0$)
- From B to C : Uniform deceleration / retardation
- Rhombus: A parallelogram with all sides equal, opposite angles equal, diagonals bisect each other

- Trapezium: One pair of sides parallel
- Kite: Two pairs of adjacent sides equal, diagonals meet at right angles bisecting one of them

3.3 Construction

- Constructing triangles:

- Perpendicular bisector:

- Angle bisector:

3.4 Symmetry

- A line of symmetry divides a two-dimensional shape into two congruent (identical) shapes.
- A plane of symmetry divides a three-dimensional shape into two congruent solid shapes.
- The number of times shape fits its outline during a complete revolution is called the order of rotational symmetry.

Number of Lines
Rotational
Shape of Symmetry Symmetry Order

Square	4	4
Rectangle	2	2
Parallelogram	0	2
Rhombus	2	2
Trapezium	0	1
Kite	1	1
Equilateral triangle	3	3
Regular hexagon	6	6

- Properties of circles:
- Equal chords are equidistant from the centre
- The perpendicular bisector of a chord passes through the centre
- Tangents from an external point are equal in length

3.5 Polygons

- Sum of angles at a point $=360$
- Angles on a straight line $=180$
- Sum of angles in a triangle $=180$
- For regular polygon
- External angles $=\frac{360}{n}$
- Internal angles $=180-\frac{360}{n}$
- For irregular polygon:
- Sum of exterior angles =360
- Sum of interior angles $=180(n-2)$
- Vertically opposite angles

- Corresponding angles

- Alternate angles

- Co-interior angles

- Exterior angle=sum of interior opposite \angle

3.6 Circle Theorem

Angle at centre = twice angle on circumference

Angles in semicircle are 90°
Opposite angles in a cyclic quadrilateral $=180^{\circ}$

Tangents from one point are
equal \angle between tangent and radius is 90°

3.7 Loci

- The locus of points equidistant from a point is a circle

- The locus of points equidistant between two point is a perpendicular bisector

- The locus of points equidistant between two lines is an angle bisector

- The locus of points equidistant (along) from a line is a parallel line

4. Mensuration

4.1 Area

- Parallelogram $=b \times h \quad$ OR $\quad a b \sin \theta$
- Triangle $=\frac{1}{2} b \times h$
- Trapezium $=\frac{1}{2}(a+b) h$
- Circle $=\pi r^{2}$
- Sector $=\pi r^{2} \times \frac{\theta}{360}$

4.2 Volume and Surface Area

- Cylinder
- Curved surface area $=2 \pi r h$
- Volume $=\pi r^{2} h$
- Cone
- Curved surface area $=\pi r l$
- Volume $=\frac{1}{3}\left(\pi r^{2} h\right)$
- Sphere
- Surface area $=4 \pi r^{2}$
- Volume $=\frac{4}{3} \pi r^{3}$
- Hemisphere
- Surface area $=2 \pi r^{2}$
- Volume $=\frac{2}{3} \pi r^{3}$

4.3 Units

- Volume:

- Mass:

- Capacity:

- Connecting volume and capacity:
- $1 \mathrm{ml}=1 \mathrm{~cm}^{3}$
- $1 k l=1 m^{3}$
- Density $=\frac{\text { Mass }}{\text { Volume }}$

5. COORDINATE GEOMETRY

5.1 Graphs

- Gradient of a Straight Line:

$$
\text { Gradient }=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

- Equation of Line:

$$
y=m x+c
$$

- Find the gradient, m
- Find the y-intercept, c

- Midpoint of Graph:

$$
\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

- Length between two points:

$$
\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}
$$

5.2 Sketching Graphs

$$
f(x)=x
$$

$f(x)=\frac{1}{x}$

$f(x)=x^{2}$

$f(x)=\frac{1}{x^{2}}$

6. TRIGONOMETRY

6.1 Bearings

- The bearing of a point B from another point A is:
- An angle measured from the north at A.
- In a clockwise direction.
- Written as three-figure number (i.e. from 000° to 360°)
- e.g. The bearing of B from A is 050°

(II IGCS: MATHEMATISS//0580

6.2 Pythagoras Theorem

- To find hypotenuse

$$
\circ a^{2}+b^{2}=c^{2}
$$

- To find one of the shorter sides
- $a^{2}=c^{2}-b^{2}$
- $b^{2}=c^{2}-a^{2}$

- Angle of elevation:

- Angle above the horizontal line.

- Angle of depression:

- Angle below the horizontal line.
- Area of a triangle: $\frac{1}{2} a b \sin c$

6.3 Ratios
 SOH CAH TOA

- Right angled triangles:
- $\sin x=\frac{\text { opposite }}{\text { hypotenuse }}$
$\circ \cos x=\frac{\text { adjacent }}{\text { hypotenuse }}$
○ $\tan x=\frac{\text { opposite }}{\text { adjacent }}$

6.4 Sine \& Cosine Rules

- Sine rule:

$$
\frac{a}{\sin a}=\frac{b}{\sin b}=\frac{c}{\sin c}
$$

- One pair of information needed

- Cosine rule

- To find the angle given 3 sides

$$
\cos a=\frac{b^{2}+c^{2}-a^{2}}{2 b c}
$$

- To find side given angle and two sides

$$
a^{2}=b^{2}+c^{2}-2 b c \cos a
$$

7. Matrices \& Transformation

7. 1 Vector

- A vector quantity has both magnitude and direction.

- E.g. Vectors a and b represented by the line segments can be added using the parallelogram rule or the nose-to-tail method.

- Multiplication by a scalar:

- A scalar quantity has a magnitude but no direction
- The negative sign reverses the direction of the vector

- Column vector:

- Top number is the horizontal component and bottom number is the vertical component

$$
\binom{x}{y}
$$

- Parallel vectors:
- Vectors are parallel if they have the same direction - In general the vector $k\binom{a}{b}$ is parallel to $\binom{a}{b}$

- Modulus of a vector:

○ In general, if $x=\binom{m}{n},|x|=\sqrt{\left(m^{2}+n^{2}\right.}$

7.2 Matrices

- Addition:

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)+\left(\begin{array}{ll}
p & q \\
r & s
\end{array}\right)=\left(\begin{array}{ll}
a+p & b+q \\
c+r & d+s
\end{array}\right)
$$

- Multiplication by scalar

$$
k\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
k a & k b \\
k c & k d
\end{array}\right)
$$

- Multiplication by vector:

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \times\left(\begin{array}{ll}
p & q \\
r & s
\end{array}\right)=\left(\begin{array}{ll}
a p+b r & a q+b s \\
c p+d r & c q+d s
\end{array}\right)
$$

- You can only multiply if no. of columns in left equals to no. of rows in right
- Determinant:
- Determinant = leading diagonal - secondary diagonal

$$
\mathrm{A}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \quad|A|=(a d)-(b c)
$$

- Inverse:
- To work out inverse, switch leading diagonal, negate secondary diagonal, multiply by $\frac{1}{|a|}$

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \quad A^{-1}=\frac{1}{(a d-b c)}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

7.3 Transformation

- Reflection (M):

- When describing a reflection, the position of the mirror line is essential.
- Rotation (R):
- To describe a rotation, the centre of rotation, the angle of rotation and direction of rotation are required.
- A clockwise rotation is negative and an anticlockwise rotation is positive.
- Translation (T):
- When describing a translation it is necessary to give the translation vector
- Enlargement (E):
- To describe an enlargement, state the scale factor, K and the centre of enlargement

$$
\text { Scale factor }=\frac{\text { length of image }}{\text { length of object }}
$$

Area of image $=K^{2}$ area of object

- If $K>0$, both object and image lie on same side of the centre of enlargement.
- If $\mathrm{K}<0$, object and image lie on opposite side of the centre of enlargement.

7.4 Transformation by Matrices

- Reflection:

- $\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$
$\circ\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)$
Reflection in the x - axis
$\circ\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
Reflection in the y-axis
- $\left(\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right)$
- Enlargement:

○ $\left(\begin{array}{ll}k & 0 \\ 0 & k\end{array}\right)$

- Rotation:

- $\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$
- $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$
- $\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)$

8. Probability

- Probability is the study of chance, or the likelihood of an event happening.
Probability of an event $=\frac{\text { number of favourable outcomes }}{\text { total number of outcomes }}$
- If probability $=0$, the event is impossible and if probability $=1$, the event is certain to happen
- All probabilities lie between 0 and 1.

8.1 Events

Exclusive events:

- Two events are exclusive if they cannot occur at the same time.

- The OR Rule:

- For exclusive events A and B
- $p(A$ or $B)=p(A)+p(B)$

Independent events:

- Two events are independent if occurrence of one is unaffected by occurrence of other.
- The AND Rule:
- $p(A$ and $B)=p(A) \times p(B)$

9. STATISTICS

9.1 Histograms

- A histogram displays the frequency of either continuous or grouped discrete data in the form of bars.
- The bars are joined together.
- The bars can be of varying width.
- The frequency of the data is represented by the area of the bar and not the height.
- When class intervals are different it is the area of the bar which represents the frequency not the
- height
- Instead of frequency being plotted on the vertical axis, frequency density is plotted.
- Class width = Interval
- Frequency density = Height

Frequency $=$ Class width \times Frequency density

9.2 Averages

- Mean:

$$
\frac{\text { Sum of values }}{\text { number of values }}
$$

- Median:

- The middle value when the data has been written in ascending or descending order
- Odd no. of values $\frac{5+1}{2}=3 r d$ value
- Even no. of values $\frac{6+1}{2}=3.5$ th value (add two values divide by 2)
- Mode:
- Most frequently occurring value
- Range:
- Difference between highest and lowest values
- Estimated mean of grouped data:
- Work out midpoints of each group and multiply by frequency
- Divide by number of values

9.3 Cumulative Frequency

- Cumulative frequency is the total frequency up to a given point.
- Inter-quartile range $=$ upper quartile - lower quartile

QEI IGOEE MATHIS//D580

[^0]: SUMMARIZED NOTES ON THE EXTENDED SYLLABUS

